

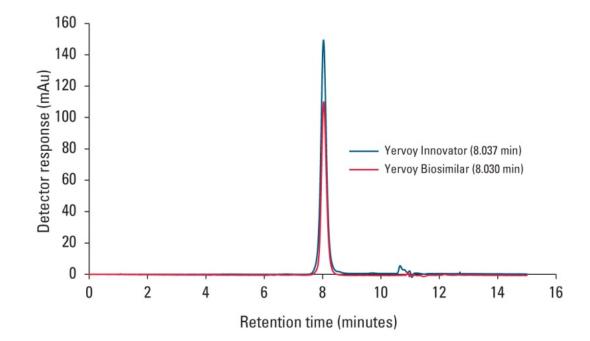
Analytical Characterization of a Biosimilar Using a 2 µm Silica Based Size Exclusion Chromatography Column

Atis Chakrabarti, Ph.D. Technical Service Tosoh Bioscience LLC, King of Prussia, PA

- A biosimilar is a "biological product that is highly similar to and has no clinically meaningful differences from an existing FDA-approved reference product" with regards to safety and effectiveness. ¹
- A reference product is "the single biological product, already approved by the FDA, against which a proposed biosimilar product is compared". ¹
- Analytical characterization of several batches of the reference product must be compared to the analysis of several batches of the biosimilar drug in order to demonstrate molecular similarity.
- A series of analytical chromatographic techniques are used to characterize the similarity such as size exclusion chromatography (SEC), reverse phase chromatography (RPC), hydrophilic interaction chromatography (HILIC) and ion exchange chromatography (IEX).
- SEC is an important chromatographic technique for the analytical characterization of a biosimilar molecule versus the reference product due to its utility in monitoring the aggregation and fragmentation of the molecule.
- In this presentation, a silica-based SEC column containing 2 µm particles with 25 nm pores was used to determine the molecular similarity between Humira and Yervoy biosimilars and the corresponding innovator reference products using UV detection.

¹FDA. Biosimilar Product Regulatory Review and Approval.

https://www.fda.gov/downloads/Drugs/DevelopmentApprovalProcess/HowDrugsareDevelopedandApproved/ApprovalApplications/TherapeuticBiologicApplications/B iosimilars/UCM581309.pdf

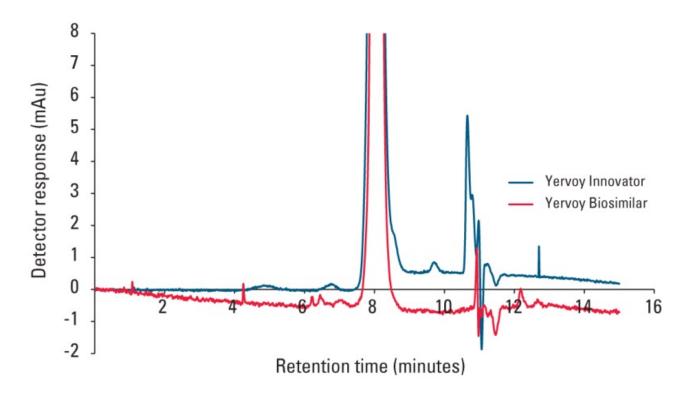


TSKgel® Column	TSKgel UP-SW3000		
Column size	4.6 mm ID × 30 cm		
Base material	Silica		
Stationary phase	Diol		
Particle size	2 µm		
Pore size	25 nm		
Exclusion limit (Proteins)	800 kDa		
Separation range (Proteins)	10 - 500 kDa		

Column: Instrument:	TSKgel UP-SW3000, 2 µm, 4.6 mm ID x 30 cm Thermo Fisher Dionex Ultimate [®] 3000 with Chromeleon [®] v. 6.8
Mobile phase:	100 mmol/L KH ₂ PO ₄ /Na ₂ HPO ₄ , pH 6.7, 100 mmol/L Na ₂ SO ₄ , 0.05% NaN ₃
Flow rate:	0.35 mL/min
Pressure:	28.5 MPa
Detection:	UV @ 280 nm
Temperature:	25°C
Injection vol.:	5 μL unless stated
Sample:	Humira [®] Innovator (5 mg/mL)
	Humira Biosimilar (4 mg/mL)
	Yervoy [®] Innovator (5 mg/mL)
	Yervoy Biosmilar (3.7 mg/mL)

The Yervoy innovator and biosimilar exhibit similar retention times.

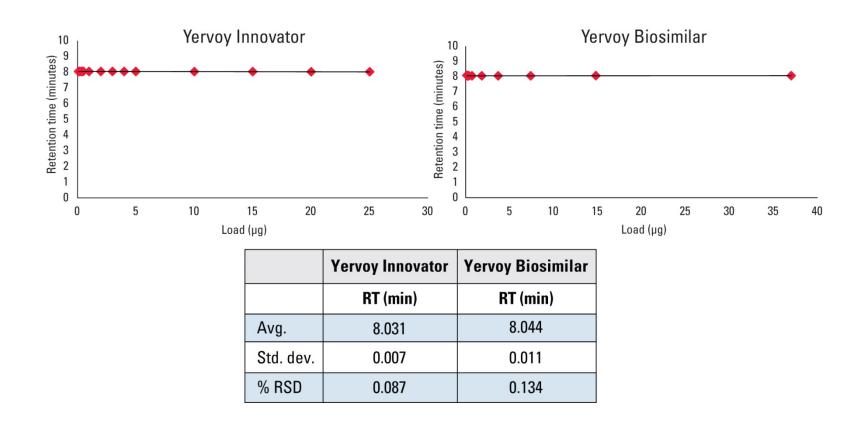
TOSOH BIOSCIENCE LLC



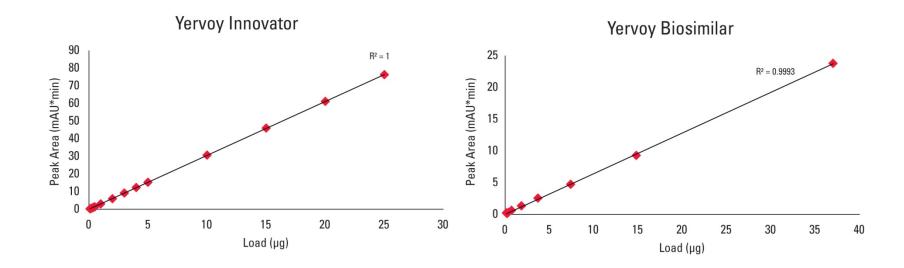
Analysis of Yervoy Innovator and its Biosimilar

Yervoy Innovator		Yervoy Biosimilar					
	RT (min)	As	N		RT (min)	As	N
	8.04	1.10	10617		8.03	1.05	8279
	8.04	1.08	10618		8.03	1.10	8279
	8.04	1.06	10614		8.02	1.11	8276
	8.04	1.07	10628		8.02	1.09	8276
	8.04	1.07	10550		8.01	1.10	8255
	8.04	1.08	10455		8.02	1.09	8572
Avg.	8.04	1.08	10580.33	Avg.	8.02	1.09	8322.83
Std. dev.	0.00	0.01	67.52	Std. dev.	0.01	0.02	122.40
% RSD	0.02	1.27	0.64	% RSD	0.07	1.92	1.47

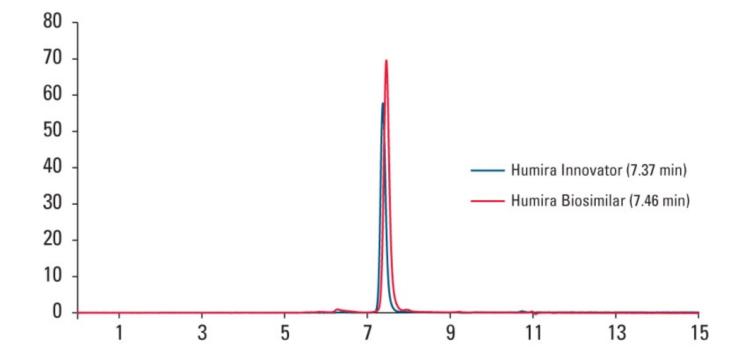
6 consecutive injections yielded low % RSD for the peak parameters such as retention time, peak asymmetry and theoretical plates.


The zoomed-in profile provides a closer look at the baseline and impurities present in each sample. Relative % peak area of the monomer and impurities are shown in the next slide.

Retention time (minutes)							
	HMW	Dimer	Monomer	Fragment			
Yervoy Innovator	4.837	6.780	8.030	9.707			
Yervoy Biosimilar	6.447, 6.223	6.987	8.037	-			
% Peak area (mAU*min)							
	HMW Dimer Monomer Fragment						
Yervoy Innovator	0.18	0.20	99.47	0.15			
Yervoy Biosimilar	0.26	0.23	99.56	0			


- The relative % peak area calculation clearly shows minimal impurities in each sample. Both monomers are >99% pure.
- \bullet This study shows that this 2 μm SEC column can be used to compare the consistency of the Yervoy innovator and its biosimilar.

Loading Study – Yervoy Innovator and its Biosimilar

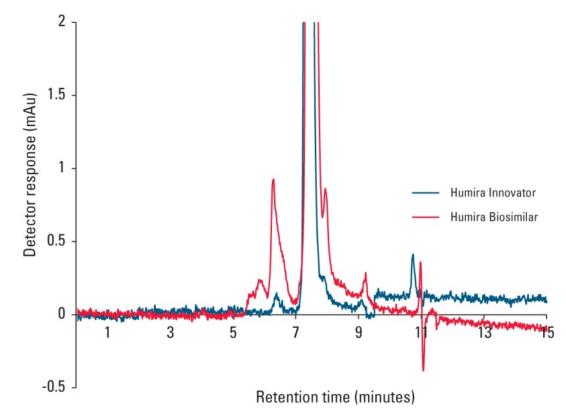

Retention time was reproducible within the experimental sample load range with a low % RSD.

Linearity Analysis – Yervoy Innovator and its Biosimilar

Linear regression shows favorable R² values for both Yervoy and the biosimilar, indicating that the TSKgel UP-SW3000 column is suitable for the analysis of Yervoy and its biosimilar across the specified loading range.

The Humira innovator and biosimilar exhibit similar retention times.

TOSOH BIOSCIENCE LLC

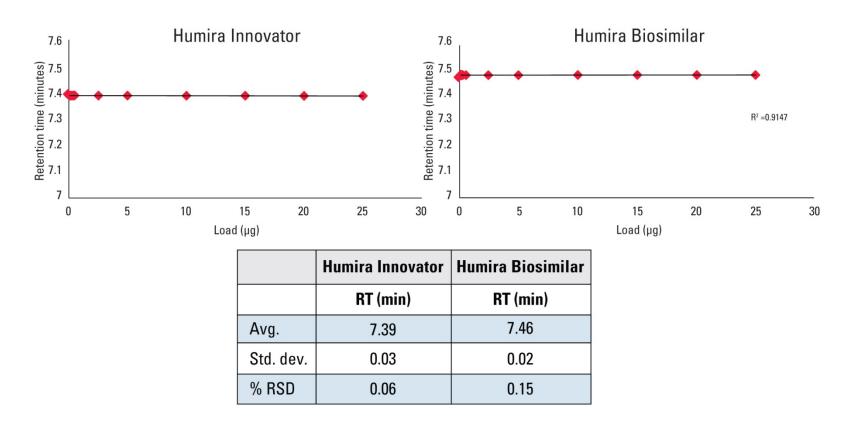

Analysis of Humira Innovator and its Biosimilar

Humira Innovator					
	RT (min)	RT (min) As			
	7.38	1.20	15082		
	7.38	1.20	14876		
	7.37	1.20	15082		
	7.37	1.20	15254		
	7.37	1.20	15247		
	7.37	1.20	15282		
Avg.	7.37	1.20	15137.17		
Std. dev.	0.00	0.00	155.55		
% RSD	0.03	0.00	1.03		

Humira Biosimilar					
	RT (min)	As	N		
	7.46	1.20	13781		
	7.46	1.20	13781		
	7.46	1.20	13704		
	7.46	1.20	13607		
	7.46	1.20	13506		
	7.46	1.20	13487		
Avg.	7.46	1.20	13644.33		
Std. dev.	0.00	0.00	131.30		
% RSD	0.00	0.00	0.96		

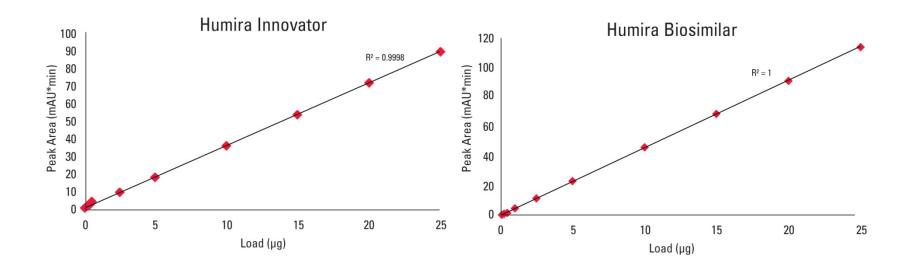
6 consecutive injections yielded low % RSD for the peak parameters such as retention time, peak asymmetry and theoretical plates.

The zoomed-in profile provides a closer look at the baseline and impurities present in each sample. Relative % peak area calculation shown in the next slide.



Analysis of Humira Innovator and its Biosimilar

Retention time (minutes)							
	HMW	Dimer	Monomer	Fragment			
Humira Innovator	0	6.387	7.37	7.883, 9.097			
Humira Biosimilar	5.843	6.283	7.46	7.960, 9.217			
% Peak area (mAU*min)							
	HMW Dimer Monomer Fragment						
Humira Innovator	0	0.27	99.59	0.14			
Humira Biosimilar	0.15	1.73	97.66	0.46			


- The relative % Peak area calculation suggests a larger percentage of impurities, predominantly aggregate, are present in the biosimilar compared to the innovator drug.
- This study shows that this 2 μm SEC column can be used to compare the consistency of the Humira innovator and its biosimilar.

Loading Study – Humira Innovator and its Biosimilar

Retention time was reproducible within the experimental sample load range with a low % RSD, as was the case with Yervoy.

Linear regression shows favorable R² values for both Humira and the biosimilar, indicating that the TSKgel UP-SW3000 column is suitable for the analysis of Humira and its biosimilar across the specified loading range.

- This study shows that a 2 µm SEC column can be successfully used to show the similarity between the innovator drug and the biosimilar as well as the impurities, as a function of hydrodynamic radii of the molecules.
- Reproducibility of consecutive injections yielded very low % RSD in analyzing peak parameters such as retention time, peak area, peak asymmetry, and number of theoretical plates and showed that this column could be successfully used for the quantitative analysis.
- Overall this study indicates utility of the TSKgel UP-SW3000 column for analyzing the molecular similarity between innovator and its biosimilar molecule.
- Future studies include further characterization of the molecular similarity using other modes of chromatography (abstract submitted for ASMS 2018).